Cohomology groups for projection tilings of codimension 2

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology groups for projection tilings of codimension 2

The gap-labelling group, which provides the set of possible values of the integrated density of states on gaps in the spectrum of a Hamiltonian describing particles in a tiling, is frequently related to the cohomology of the tiling. We present explicit results for the cohomology of many well-known tilings obtained from the cut and projection method with codimension 2, including the (generalized...

متن کامل

Cohomology of Canonical Projection Tilings

We define the cohomology of a tiling as the cocycle cohomology of its associated groupoid and consider this cohomology for the class of tilings which are obtained from a higher dimensional lattice by the canonical projection method in Schlottmann’s formulation. We prove the cohomology to be equivalent to a certain cohomology of the lattice. We discuss one of its qualitative features, namely tha...

متن کامل

Cohomology groups for projection point patterns

Aperiodic point sets (or tilings) which can be obtained by the method of cut and projection from higher dimensional periodic sets play an important role for the description of quasicrystals. Their topological invariants can be computed using the higher dimensional periodic structure. We report on the results obtained for the cohomology groups of projection point patterns supplemented by explici...

متن کامل

Digital cohomology groups of certain minimal surfaces

In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...

متن کامل

The codimension-one cohomology of SLnZ

We prove that H( n 2)(SLn Z;Q) = 0, where ( n 2 ) is the cohomological dimension of SLn Z, and similarly for GLn Z. We also prove analogous vanishing theorems for cohomology with coefficients in a rational representation of the algebraic group GLn. These theorems are derived from a presentation of the Steinberg module for SLn Z whose generators are integral apartment classes, generalizing Manin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials Science and Engineering: A

سال: 2000

ISSN: 0921-5093

DOI: 10.1016/s0921-5093(00)01171-0